Graphical Lasso Quadratic Discriminant Function for Character Recognition

نویسندگان

  • Bo Xu
  • Kaizhu Huang
  • Irwin King
  • Cheng-Lin Liu
  • Jun Sun
  • Satoshi Naoi
چکیده

The quadratic discriminant function (QDF) derived from the multivariate Gaussian distribution is effective for classification in many pattern recognition tasks. In particular, a variant of QDF, called MQDF, has achieved great success and is widely recognized as the state-of-the-art method in character recognition. However, when the number of training samples is small, covariance estimation involved in QDF will usually be ill-posed, and it leads to the loss of the classification accuracy. To attack this problem, in this paper, we engage the graphical lasso method to estimate the covariance and propose a new classification method called the Graphical Lasso Quadratic Discriminant Function (GLQDF). By exploiting a coordinate descent procedure for the lasso, GLQDF can estimate the covariance matrix (and its inverse) more precisely. Experimental results demonstrate that the proposed method can perform better than the competitive methods on two artificial and six real data sets (including both benchmark digit and Chinese character data).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphical lasso quadratic discriminant function and its application to character recognition

Multivariate Gaussian distribution is a popular assumption in many pattern recognition tasks. The quadratic discriminant function (QDF) is an effective classification approach based on this assumption. An improved algorithm, called modified QDF (or MQDF in short) has achieved great success and is widely recognized as the state-of-the-art method in character recognition. However, because both of...

متن کامل

Handwritten numerical recognition based on multiple algorithms

-In this paper, the authors combine two algorithms for application to the recognition of unconstrained isolated handwritten numerals. The first algorithm employs a modified quadratic discriminant function utilizing direction sensitive spatial features of the numeral image. The second algorithm utilizes features derived from the profile of the character in a structural configuration to recognize...

متن کامل

Segmentation-free MRF Recognition Method in Combination with P2DBMN-MQDF for Online Handwritten Cursive Word

This paper describes an online handwritten English cursive word recognition method using a segmentation-free Markov random field (MRF) model in combination with an offline recognition method which uses pseudo 2D bi-moment normalization (P2DBMN) and modified quadratic discriminant function (MQDF). It extracts feature points along the pen-tip trace from pen-down to pen-up and uses the feature poi...

متن کامل

Learning Quadratic Discriminant Function for Handwritten Character Classification

For handwriting recognition integrating segmentation and cluss$icution, the underlying classifier is desired to give both high uccuruc~ and resistance to outlil3-S. In a previous evaluation study, the modified quadratic discriminunt function (MQDF) proposed by Kimuru et al. was shown to be superior in out&r rejection but inferior in cluss$icution uccuruc~ us compared to neural cluss$ers. This p...

متن کامل

Accuracy Improvement of Devnagari Character Recognition Combining SVM and MQDF

This paper deals with the recognition of off-line handwritten Devnagari characters. Here two sets of feature are computed and two classifiers are combined to get higher accuracy of Devnagari character recognition. Dimension of the features vector of each set is 392. First feature set is computed based on the directional information obtained from the arc tangent of the gradient. Since most of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011